

ACCIDENTES RADIOLOGICOS ASPECTOS CLINICOS CASOS REPORTADOS EN EL PERU

Dr. ALBERTO LACHOS DAVILA Medico Asistente del Departamento de Radioterapia Instituto de Enfermedades Neoplásicas Lima - Perú

ACCIDENTES RADIOLOGICOS Y NUCLEARES 1944 - 2012

Condición	Número
Accidentes	~ 500
Personas expuestas	~3,000
Fallecimientos	~150

ACCIDENTES RADIOLOGICOS Y NUCLEARES

Practicas	%
Radiografía Industrial	35
Irradiadores	27
Medicina	12
Laboratorio	10
Otros	8
Reactores nucleares	5
Educación	2
Militar	1

PRINCIPALES CAUSAS DE ACCIDENTES RADIOLOGICOS

Fuentes "Huérfanas"

The Radiological Accident in Lilo

(4)

Abandonadas

Perdidas

Robadas

EXPOSICIÓN MÉDICA Riesgos

GAMMAGRAFIA INDUSTRIAL

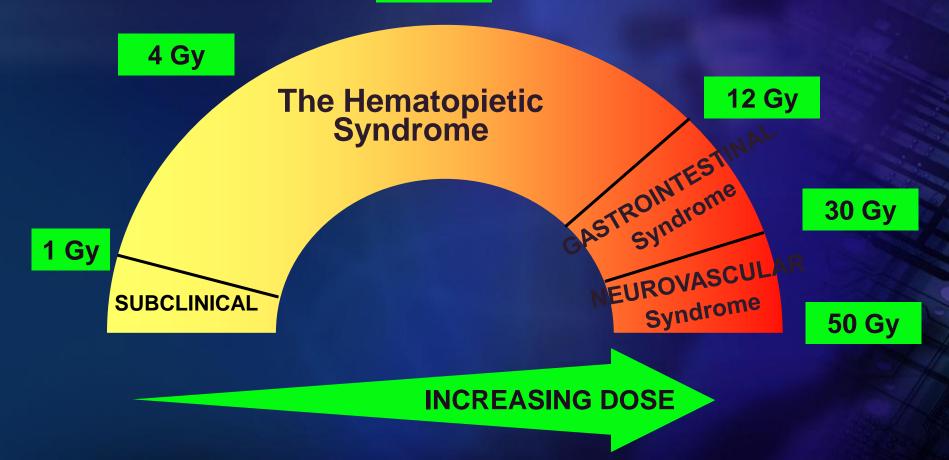
DISPOSITIVOS INVOLUCRADOS EN ACCIDENTES POR RADIACION

- Dispositivo de Dispersión Radiológica
- Dispositivo de Exposición Radiológica
- Dispositivo Nuclear Improvisado
- Artefactos de Destrucción de Masa
- Ataque a instalaciones nucleares
- Contaminación del agua de abastecimiento
- Contaminacion del agua de abastecimiento

- Los efectos perjudiciales de la radiación dependen de la cantidad (dosis), la duración y el grado de exposición.
- La dosis total y el grado de exposición determinan los efectos inmediatos sobre el material genético de las células.
- Los órganos inicialmente y más afectados por la exposición a la radiación son aquellos que están formados por tejidos en los cuales el componente celular se multiplica rápidamente, como el intestino y la médula ósea.
- La exposición a la radiación puede producir efectos agudos y crónicos en el organismo.

- Los efectos de la radiación también dependen del porcentaje del organismo que resulta expuesto.
- El síndrome agudo por irradiación se produce por la exposición a dosis de radiación mayor a un Gy entregado a todo el cuerpo o una parte importante de este durante un corto período de tiempo.
- El síndrome hematopoyético, gastrointestinal y cardiovascular se producen cuando la dosis de radiación adquirida supera 1 Gy, 6 Gy y 20 Gy respectivamente.

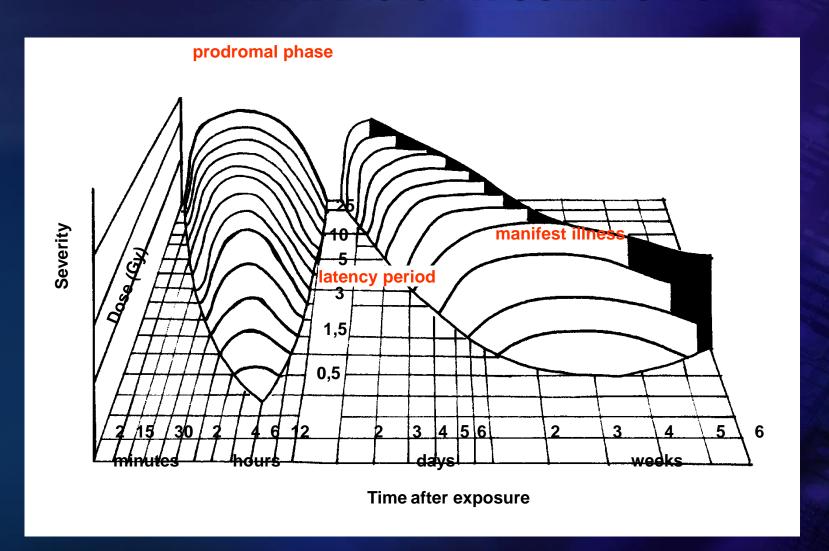
SINDROME AGUDO POR RADIACION (SAR)


Concepto

Se denomina SAR a la secuencia de eventos CLÍNICOS asociados indicadores de LABORATORIO determinados por acción de una dosis de radiación ionizante penetrante, superior a UN DETERMINADO UMBRAL, sobre todo o al menos a una parte considerable del organismo.

Su severidad depende de la magnitud de la dosis, de la tasa de dosis y del grado de homogeneidad de la exposición

SINDROME AGUDO POR RADIACION


6-8 Gy

Fases del SAR

- Pródromos,
- Latencia,
- Manifiesta, crítica o período de estado
- Recuperación o muerte

SINDROME AGUDO POR RADIACION IRRADIACION A CUERPO TOTAL

SAR clasificación según umbrales de dosis

- Forma hematológica 0,8-1 Gy
- Forma gastrointestinal* 8-10 Gy
- Forma neurovascular > 20 Gy
- (neurológica > 40 Gy)

EVALUACION PRIMARIA: las primeras 48 horas

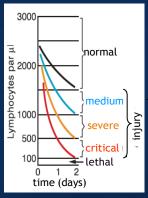
average delay before symptoms appear cutaneous erythema

asthenia

nausea

vomiting per 24 hrs

diarrhea/number of stools per 24 hrs


abdominal pain

headheach

temperature

blood pressure

temporary loss of consciousness

at 24 hours

at 48 hours

Score I

less than 12 hrs

0

+

+

maximum 1

maximum 2 - 3; bulky

minimal

C

below 38°C

normal

0

Score II

less than 5 hrs

+/-

++

+++

1 to 10

2 - 9; soft

intense

++ 38 - 40 °C

normal - possible temporary decrease

(

Score III

less than 30 min

+++; before 3rd hrs

+++

(-)

above 10; intractable

above 10; watery

excruciating

excruciating; signs of intra-cranial HT

above 40 °C

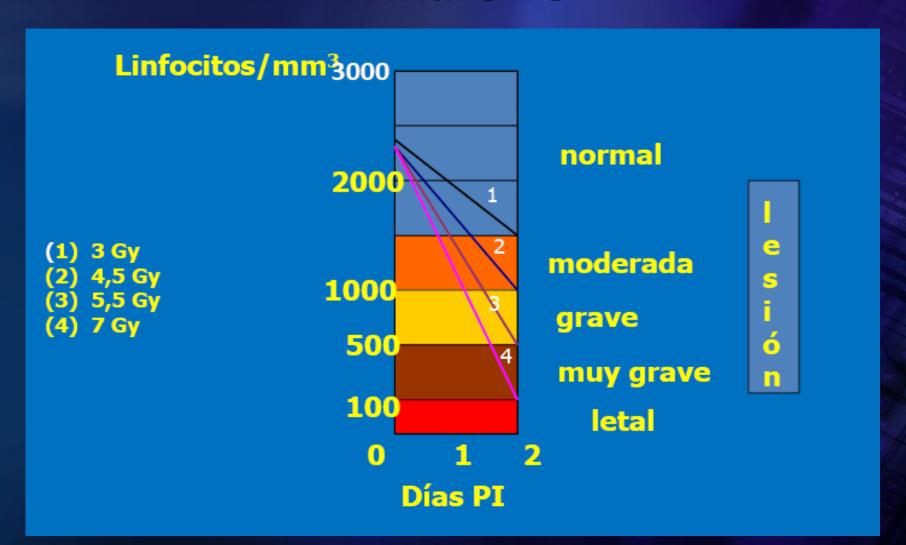
systolic below 80

+ / coma

Deplecion de linfocitos en sangre periferica

above 1 500 / μl above 1 500 / μl

monitoreo


below 1 500 / μl below 1 500 / μl

Hospitalización para tratamiento

below 500 / μl below 100 / μl

Hospitalización Falla multiorgánica

Respuesta linfocitária de Andrews

Fase prodromal cronología de vómitos y estimación de dosis

- < 30 min: > 6 Gy
- 0,5 a 1 h : 4 a 6 Gy
- 1 a 2 h : 2 a 4 Gy
- 2 a 3 h : 1 a 2 Gy
- ausencia: < 1Gy

Severidad

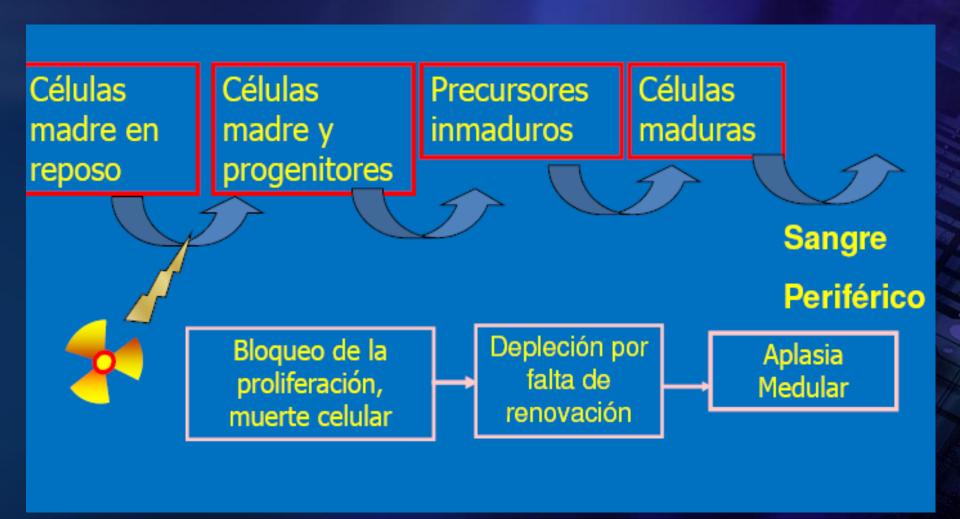
Fase prodromal y estimación de dosis

Manifestación	Tiempo luego de la exposición h	Estimativa de dosis (Gy)
diarrea	-	3
diarrea	< 2h	6 – 10
diarrea	< 1h	> 10
Fiebre, hipotensión, signos neurológicos		Dosis letal

Fase de latencia

Los síntomas prodromales son generalmente reversibles, remiten espontáneamente dando lugar a una fase de latencia, clínicamente silenciosa. Esta fase es tanto más corta cuanto mayor haya sido la dosis

En la forma neurovascular no hay fase delatencia: el paciente pasa de la etapa prodromal al período de estado

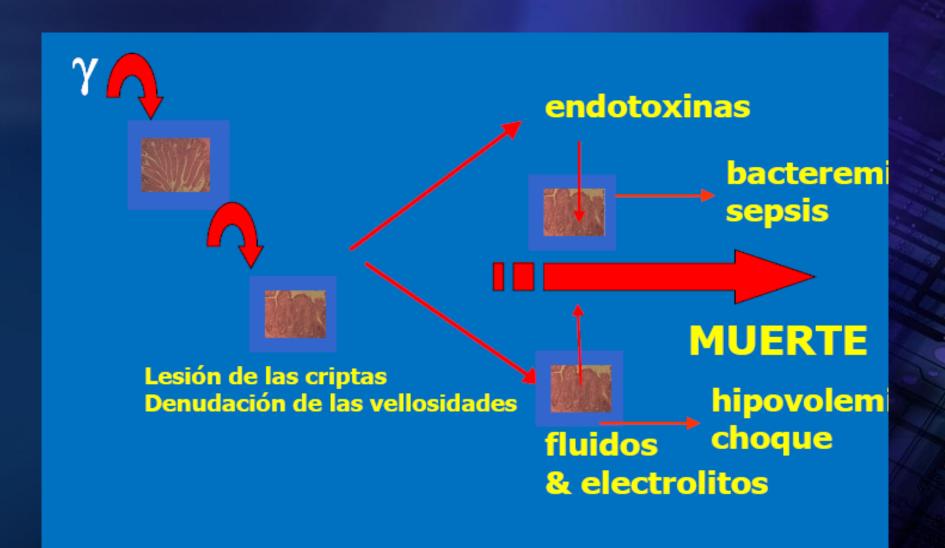

Forma hematológica

Es el resultado de la injuria Radioinducida sobre la Médula ósea luego de una Exposición aguda de todo el cuerpo con dosis > 1Gy

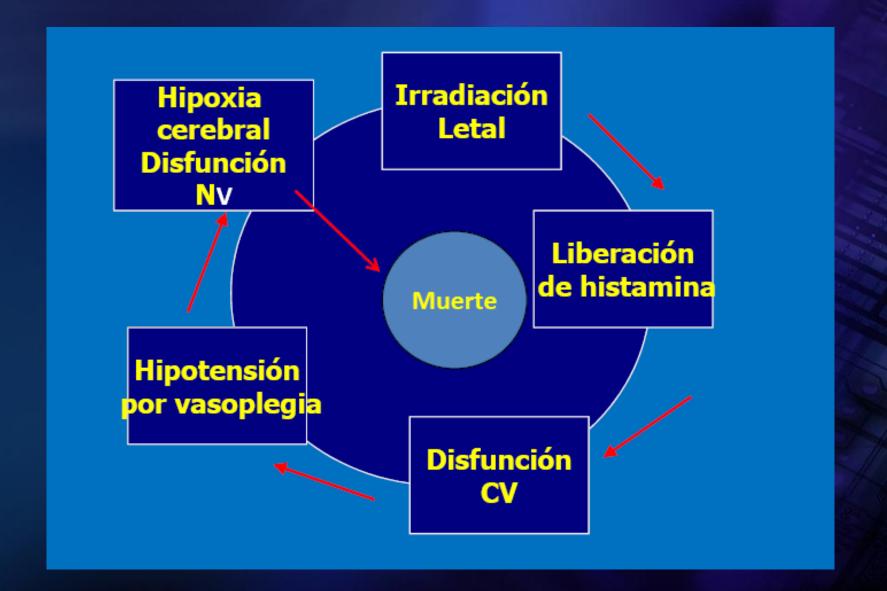
Los elementos figurados de la sangre comienzan a disminuir con el correr de los días como consecuencia de la muerte de sus progenitores en la médula ósea

Forma hematológica: fisiopatología

Forma hematológica valor pronóstico de los neutrofilos


los neutrófilos descienden a un valor de 500 por mm3 NEUTROPENIA: RIESGO DE SEPSIS

Forma hematológica: plaquetas


Los valores críticos se alcanzan a los 30 días p.i. con dosis de 1 Gy y entre 10-15 días p.i. con dosis de 6 Gy

PLAQUETOPENIA: RIESGO DE HEMORRAGIAS

Forma GI - fisiopatología

Síndrome neurovascular

Evaluación

- Clínica: cronología y severidad de los síntomas prodomales
- Hemogramas seriados, punciones medulares en sitios distantes
- Bioquímica plasmática: aumento de amilasa indica dosis >1,5 Gy; aumento de transaminasa glutámico oxalacética (TGO) sugiere dosis letal; descenso del cociente lácticodeshidrogenasa (LDH)/fosfatasa alcalina (PA) sugiere dosis letal

Un "nuevo" paradigma

Tratamiento del SAR fase prodromal

- Manifestaciones frecuentemente auto-limitadas
- Control de vómitos
 - Metoclopramida
 - antagonistas selectivos de los receptores 5-HT3 (ondansetron)
 - hidratación equilibrio electrolítico
- Diarrea
 - anticolinérgicos, loperamida ...

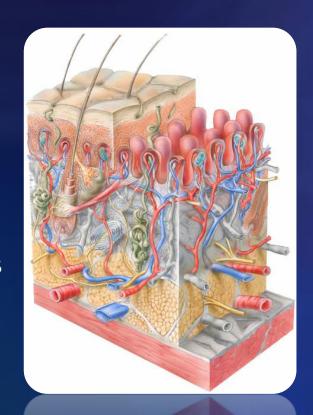
Tratamiento del SAR fase de manifestación

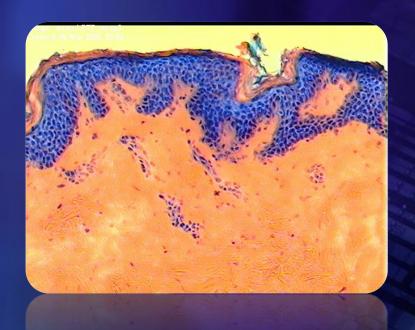
- Básicamente
 - prevenir y tratar las infecciones y hemorragias
 - manejo de la aplasia medular
 - mantener el equilibrio electrolítico y nutricional

Factores de crecimiento en el SAR

no
uede ser esencial
robablemente no efectiva

- o indicación preliminar cuando neutrofilos <500/mm³
- administrar hasta CAN >1.000/mm³


SÍNDROME CUTÁNEO POR RADIACIÓN


Radiopatología de la Piel

Epidermis

Dermis

Hypodermis

Three layers:

- Epidermis (tejido jerárquico)
- Dermis (Flexible)
- Hypodermis (Flexible)

Radiopatología de la piel. Efectos tempranos (agudos)

Después de una sola dosis, alta tasa de dosis:

ERITEMA
EDEMA
DESCAMACIÓN SECA
AMPOLLA
DESCAMACIÓN HUMEDA
NECROSIS
CAIDA DEL PELO
PERDIDA DE UÑAS

Depende de la capa epidermis y microvascularización

Radiopatología de laPiel. Efectos agudos vs dosis

Después de una sola dosis, alta tasa de dosis:

4-5 Gy: caida transitoria del pelo

6-12 Gy: Eritema con posterior pigmentación

12-15 Gy: Epitelitis seca, con eritema y

descamación

15-25 Gy: Eritema húmedo.

Encima de 25 Gy: radionecrosis de la piel.

Radiopatología de la Piel. Descamación Seca.

dosis de 12 a 15 Gy

- compensación de la perdida de la epidermis :
 - ausencia de exudado
 - ausencia d formación de costra.

Radiopatología de la piel, Descamación húmeda

- Dosis de 15 a 25 Gy.
- Perdida de la Epidermis :
 - Exudado
 - Formación de costra.

ERITEMA PRECOZ (> 3 Gy)

fase de latencia (*)

ERITEMA SECUNDARIO / EPITELITIS SECA (> 10 Gy)

EPITELITIS EXUDATIVA (>15 Gy)

Restauración en 3 a 6 meses con o sin secuelas tróficas (< 25 Gy)

Restauración aparente (> 25 Gy)

Silencio clínico (meses)

(*) más corta a mayor dosis. A dosis muy altas no hay fase de latencia y de la epitelitis exudativa se pasa a la ulceración y necrosis (fusión de fases)

Ulceración

Necrosis (6-18 meses)

Fibrosis (años)

Radiopatología de la Piel. Radionecrosis

- Dosis > 25 Gy
- Compromiso de la dermis, obstrucción de la perfusión capilar.
- Respuesta inflamatoria.
- Area ulcerada cubierta de fibrina.

Radiopatologia de la Piel. Efectos tardíos (crónicos)

- Involucra las tres capas de la piel.
- Características clínicas muy diferentes a efectos tempranos.
 - Atrófia de la piel.
 - Fibrosis cútanea o esclerosis.
 - Hipo o hiperpigmentación
 - Telangiectasias
 - Hiperkeratosis
 - Alteraciones en el crecimiento de las uñas y del pelo.

Fibrosis radionducida: región mandibular derecha que presenta marcada atrofia dérmica y retracción de la piel, telangiectasias y discromías. Se observa una pequeña escara necrótica en el borde inferior.

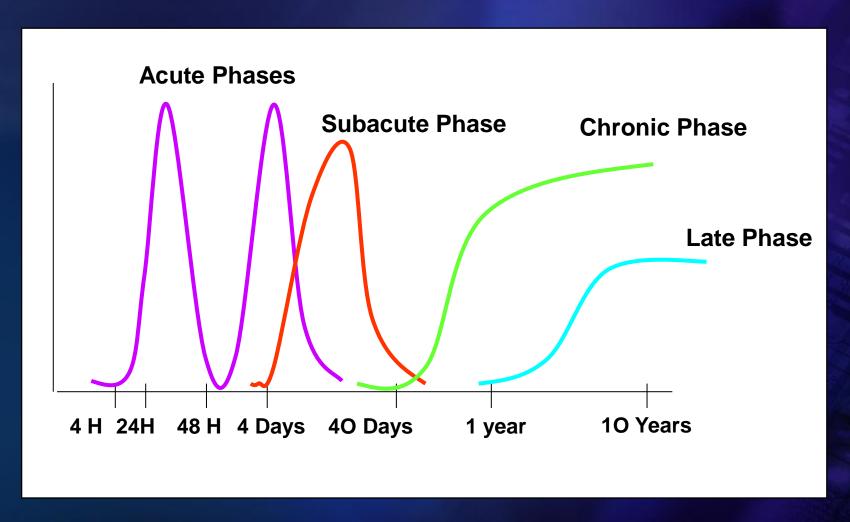
Radiopatología de la Piel

Early Effects

Eritema
Descamaión húmeda
Ulcera / Necrosis
Pérdida del pelo

Horas - 30 días - 10 sem. 5 días - 8 sem. 5 días - >12 sem. 2 - 8 sem.

Late Effects


Fibrósis

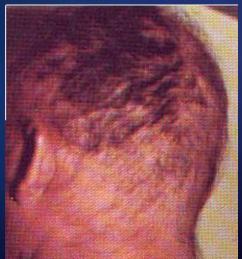
Hiperpigmentación / depigmentaión Keratosis Atrófia Telangiectasia > 12 sem.

Síndrome Cutáneo de la Radiación (SCR) – Lesión Local – "Quemadura" Radiológica

- Se define como SCR al conjunto de síntomas y signos consecutivos a la sobreexposición de la piel con altas dosis
- De acuerdo al tipo de escenario, el SCR puede resultar de una exposición aguda de todo el cuerpo a muy altas dosis o, más frecuentemente, ser la consecuencia de una irradiación localizada.

SÍNDROME CUTÁNEO POR RADIACIÓN

ES UN PROCESO DINÁMICO


SÍNDROME CUTÁNEO POR RADIACIÓN ACCIDENTE DE NESVIZH 9-16 GY ⁶⁰CO

ERROR EN EL DIAGNÓSTICO. PEMPHIGUS FOLIACEUS

SINDROME CUTANEO DE LA RADIACIÓN

La piel responde frente a las RI de manera similar que frente a otro tipo de noxas físicas, pero existen particularidades que diferencian a las quemaduras radiológicas de las quemaduras térmicas:

- El agente causal no es visible ni puede ser percibido por los sentidos (el sujeto puede ignorar que fue expuesto a RI);
- Las lesiones no se evidencian en forma inmediata;
- El compromiso (tanto en superficie como en profundidad) puede ser mucho mayor de lo que evidencian las lesiones clínicas;
- El dolor no es inmediato, pero puede haber parestesias precoces;
- Las lesiones son "dinámicas" con crisis de dolor paroxístico que preceden a las crisis de reagudización.

Presunción diagnóstica cuando:

paciente que presenta una "quemadura" sin una causa evidente (exposición térmica / agente químico)

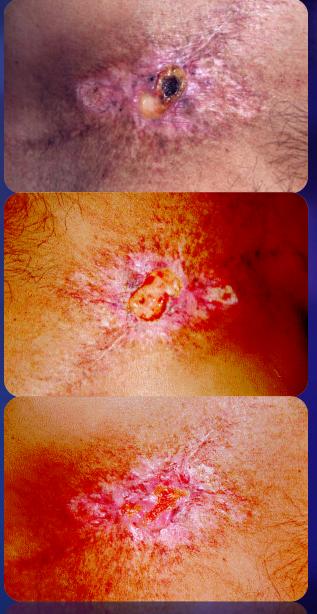
trabajador cuya historia ocupacional favorezca la sospecha de una exposición accidental a R.I.

antecedente de exposición a R.I. con fines médicos diagnósticos o terapéuticos

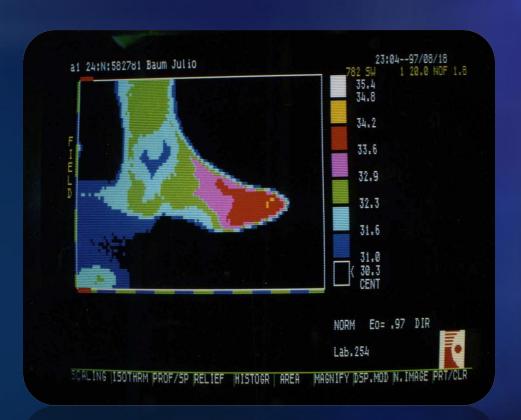
miembros del público pueden exponerse inadvertidamente a R.I. a partir de fuentes radiactivas que han escapado de control

Recopilación detallada de la historia de la exposición accidental y examen físico meticuloso

La severidad y cronología de los síntomas y signos permite estimar rangos de dosis y establecer un pronóstico


Clínicamente la gravedad se aprecia a través de la evaluación de un conjunto de parámetros que deberán ser cuidadosamente consignados en la historia clínica del paciente

El examen clínico sólo permite apreciar los tejidos superficiales, accesibles a la observación directa


A la evaluación clínica deben agregarse ciertos estudios complementarios que sumados a la estimación de dosis mediante dosimetría física y citogenética contribuyen al diagnóstico, pronóstico y decisión terapéutica

El registro fotográfico seriado permite objetivar evolución y respuesta terapéutica

La termografía permite trazar curvas de isotermia que se se correlacionan con las curvas de isodosis y con la topografía de la lesión

Lab. 254 SCHLING ISOTHRM PROF/SP RELIEF HISTOGR | AREA | MAGNIFY DSP.MOD N. IMAGE PRI/OL

ESTUDIOS CON RADIOTRAZADORES

El estudio vascular (Ej: Tc⁹⁹) evalúa Cambios locales en el flujo sanguíneo

La presencia de focos de hipervascularización en los territorios irradiados precede a la aparición de los signos clínicos (diagnóstico en la fase de latencia clínica)

Las curvas de isoactividad pueden correlacionarse con curvas de isodosis

Utiles en la evaluación de respuesta terapéutica y seguimiento evolutivo

DOSIMETRIA CITOGENETICA

- La cuantificación de aberraciones cromosómicas inestables (dicéntricos y anillos) en linfocitos de sangre periférica puede subestimar dosis en caso de sobreexposiciones muy inhomogéneas.
- Pueden realizarse análisis estadístico-matemáticos a fin de estimar la dosis media en la fracción del cuerpo irradiado y el tamaño de dicha fracción (métodos de Dolphin, método de Qdr de Sasaki).
- El procedimiento requiere un factor de corrección.

- Tratamiento sistémico: sedación, terapia analgésica, terapia antinflamatoria, terapia antisquémica, terapia antioxidante.
- Tratamiento local: toilette, lavados con soluciones antisépticas, sulfadiacina de plata + lidocaína, estimulantes de la granulación (Ej: trolamina), factores de crecimiento (KGF¹), vendaje oclusivo.
 - (1) KGF: Keratinocyte Growing Factor sólo se demostró su eficacia para el tratamiento local de las mucositis radioinducidas
- Tratamiento quirúrgico CLASICO: resección de los tejidos que evolucionarán hacia la necrosis (> 25 Gy).

TRATAMIENTO SISTÉMICO DEL SCR

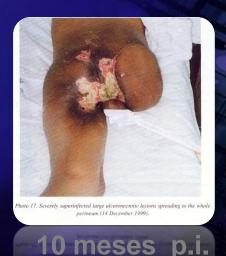
- Terapia analgésica y antinflamatoria: analgésicos convencionales, antinflamatorios no esteroides (AINE), opiáceos.
- Terapia antisquémica: pentoxifilina (400 mg V.O. de 1 a 3 veces por día), mejora la microcirculación, disminuye la viscosidad sanguínea, inhibe el TNF¹, efecto antinflamatorio sobre el endotelio vascular.
- Terapia antioxidante: alfatocoferol (vitamina E) asociado a vitaminas A y C.
- O2 hiperbárico
- (1) TNF: Tumor Necrosis Factor

Enfoque clásico:

- Tratamiento médico conservador para lesiones superficiales
- Tratamiento quirúrgico para ulceraciones profundas y/o dolorosas y para lesiones necróticas:
 - ✓ exéresis + injerto (cobertura temporaria: piel cadavérica, xenoinjerto, piel artificial; cobertura definitiva: autoinjerto);
 - ✓ exéresis + colgajo rotatorio (cobertura definitiva); lesiones distales: amputación

Enfoque clásico

Conducta expectante, la cirugía iba "por detrás" de la evolución clínica:


- resecciones limitadas con cirugía conservativa;
- se esperaba la evolución de las lesiones;
- se sometía al paciente a cursos repetitivos de cirugía;
- se generaba un "círculo vicioso": necrosis, cirugía, nueva necrosis, nueva cirugía...

Enfoque actual en casos de altas dosis

Conducta activa, la cirugía se anticipa a la evolución clínica:

- no se espera la evolución de las lesiones;
- cirugía precoz y amplia de todos los tejidos que evolucionarán hacia la necrosis;
- se determina extensión de la exéresis en función de la dosis (en superficie y en profundidad);
 - medicina regenerativa: terapias celulares.

- Apoyo psicológico tanto en la fase aguda como a largo plazo (para el paciente y su familia).
- Interconsulta precoz con especialistas para prevenir secuelas (fibrosis, deformidades, retracciones).
- Seguimiento a largo plazo (clínico, cirujano plástico, radiopatólogo). Proveer recomendaciones por la mayor vulnerabilidad a traumas mecánicos, químicos y térmicos.
- Manejo de las reacciones tardías: prevenir isquemia, tratar dolor, eventualmente terapia hiperbárica, interferon gamma.

TRATAMIENTO DEL SCR CONCLUSIONES

- Abordaje por un equipo multidisciplinario.
- La cirugía debe ser PRECOZ, antes de que ocurra la radionecrosis.
- La exéresis debe estar guiada por la reconstrucción tridimensional de la dosis.
- Autoinjerto clásico (en "mesh") + terapia celular local con MSC expandidas in vitro.
- El futuro del tratamiento del SCR: ¿terapias celulares y nuevos abordajes de la medicina regenerativa?

SECOND SURGERY WITH MSC INJECTION

Courtesy: IRSN - HIA Percy (France)

59

CONTAMINACIÓN EXTERNA

MATERIAL RADIACTIVO DEPOSITADO SOBRE LA SUPERFICIE DEL CUERPO

Fuentes abiertas: soluciones, polvos

OBJETIVOS DE LA DESCONTAMINACIÓN EXTERNA

- Remover el contaminante de la piel con el fin de reducir la dosis
- Prevenir su incorporación (contaminación interna)
- Evitar la dispersión de la contaminación
 - Mejorar la exactitud de conteo en el contador de todo el cuerpo (CTC)

MANEJO DEL PACIENTE CONTAMINADO EXTERNAMENTE

La severidad de una CRE depende de:

- Actividad depositada
- Naturaleza y energía de la radiación emitida
- Características químicas del compuesto (ej. solubilidad)
- Tiempo de contacto con la piel
- Área de piel expuesta
- · Localización anatómica del área contaminada
- Presencia de herida

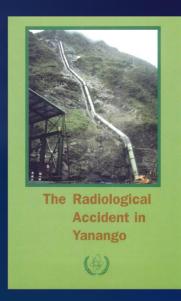
MANEJO DEL PACIENTE CONTAMINADO EXTERNAMENTE

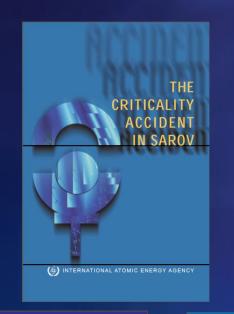
Determinar si hay CRE, delimitar su localización y descontaminar en el área fijada a tal fin

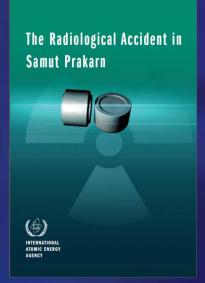
Idealmente 3 personas:

- 1) efectuar los procedimientos de descontaminación
- 2) monitorear antes y al final de cada procedimiento
- 3) registrar en formulario apropiado todas las acciones y los resultados de las mediciones

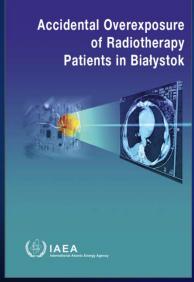
MANEJO DEL PACIENTE CONTAMINADO EXTERNAMENTE

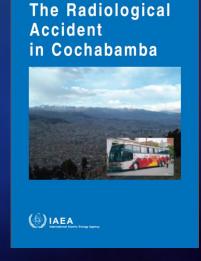

Descontaminar:

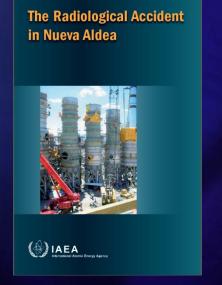

- Heridas
- Ojos, nariz, boca, oídos
- Piel intacta



En ese
Orden
de
prioridad


ACCIDENTS REPORT 2000 - PRESENT





DOSIMETRIA FISICA

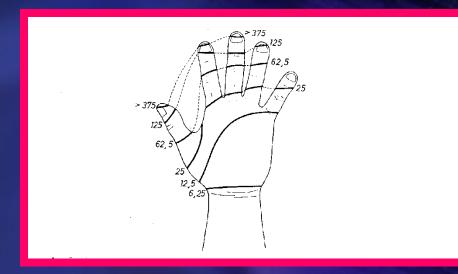
Lectura de dosímetros personales, mediciones "in situ"

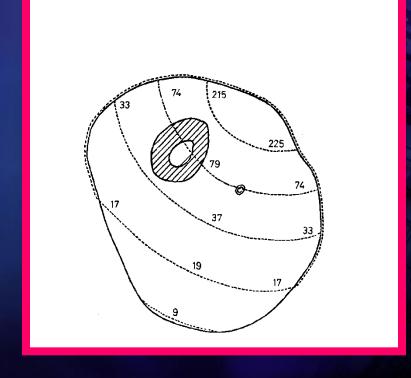
Reconstrucción del escenario accidental : modelos matemáticos (códigos de cálculo) o experimentales (fantomas antropomorfos)

Se deberán considerar:

FUENTE

GEOMETRIA DE IRRADIACION


CRONOLOGIA DE LA EXPOSICION


DISTRIBUCION TEMPORO-ESPACIAL DE LA DOSIS

CONSTRUCCION
DE CURVAS DE
ISODOSIS

PUEDEN AUXILIAR AL MEDICO EN LA ESTIMACION DEL PRONOSTICO

ACCIDENTES RADIOLOGICOS EN EL PERU

ACCIDENTE POR EXPOSICION A FUENTE DE COBALTO 60

- El 16 de Noviembre de 1995.
- En el departamento de radioterapia del Hospital
 Goyeneche de Arequipa-Perú.
- Afectó a una persona de mantenimiento de 38 años de edad (Técnico Electricista), quien fue llamado para efectuar una reparación en el equipo de radioterapia marca Theratrón 60, con fuente de Cobalto-60.
- El equipo había sufrido un desperfecto en el sistema de desplazamiento de la fuente.

 International Conference on Radiation Protection in Medicine – Setting the Scene for the Next Decade

> 3-7 December 2012 Bonn, Germany

RADIOLOGICAL ACCIDENT DUE TO DIRECT EXPOSURE OF TO COBALT 60 SOURCE.
FOLLOW-UP AFTER 16 YEARS

ACCIDENTE RADIOLÓGICO DE YANANGO

Lugar: Hidroeléctrica de Yanango. San Ramón. Junín (300 km de Lima)
Empresa HAUG S.A. contrata a BECO S.A.

Gammagrafía Industrial (Ir-192), 1,37 TBq,

Día: Sábado 20 de Febrero, 1999

Personal de BECO instala equipo de g.i. en tubería (diámetro:2 m) en la mañana

Soldador de HAUG "encuentra" la fuente a las 16h00 aprox. y la guarda en el bolsillo posterior

Continua el trabajo junto con ayudante hasta las 22h00. Se traslada a casa en minibus durante 20 minutos con 15 personas

A las 22h30 llega a su casa con dolor y cojeando

1999-02-25

IRREGULARIDADES DE BECO

- Personal sin Licencia Individual
- Equipo no autorizado (ingreso ilegal Ecuador)
- No se utilizó detector de radiaciones
- Seguridad física inapropiada
- No se usó dosimetría personal, ni balizamiento, ni señales de advertencia

ACCIDENTE DE CHILCA

- Tres jovenes son hospitalizados en el INEN por exposición a fuente de Iridio 192 en gammagrafia industrial, el 17 de enero del 2012.
- Paciente, G.J.L. F. de 25 años presentando intenso dolor, ardor, edema e hipoestesia del dedo índice de mano izquierda y aparece ampolla a nivel del pulpejo del falange distal del dedo índice de la mano izquierda desde el 15.01.12 (tres días después del accidente).
- Paciente A.L.F (hermano) de 20 años de edad paciente asintomático en el momento de la hospitalización.
- Paciente J. C. A. de 24 años, presentando cefalea leve, no otras molestias.

ACCIDENTE DE CHILCA

- Instauración de tratamiento a G.J.L.F con analgésicos y dexametazona.
- Hemograma completo.
- Estudio citogenético.
- Rx de ambas manos.
- Aspirado de medula osea de esternon y cresta iliaca.
- Reporte a las instituciones internacionales correspondientes.
- Necesidad de reconstrucción del accidente.
- Contacto con especialistas en Francia para transplante de celulas mesenquimales.

RECONSTRUCCION DEL ACCIDENTE

I. Datos Administrativos

1 Entidad

Qualitest INTL Service SAC

2 Asunto

Informe de accidente radiológico

3 Referencia

Fuente Radiactiva: Marca: Spec; modelo: G-1T; serie: SL0604

Actividad de referencia: 120Ci al 21/12/2011

4 Fecha y lugar en el momento del accidente de 3653

Accidente : Del 11 al 12 de enero de 2012, 23:00 - 02:30 h

Reconstrucción : 21 de enero de 2012, 11:30 - 16:00 h

Lugar : Chilca, Lima - Perú

III. Actividades

- 1 Se recopilo información administrativa y técnica de la fuente radiactiva, de la instalación, del personal, y de los procedimientos involucrados en el evento accidental
- 2 Se reconstruyo el evento radiológico, entrevistando al operador del equipo (afectado) y a los responsables de la instalación
- 3 Se realizo medidas experimentales para las medidas de las tasa de exposición de la fuente radiactiva

INFORMACIÓN DE LA GEOMETRÍA DEL EVENTO

Técnica para tubos de 2 Pulg.

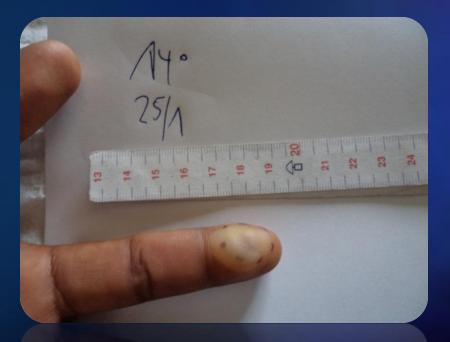
Técnica para tubos de 3 y 4 Pulg.

CALCULO DE DOSIS TOTAL

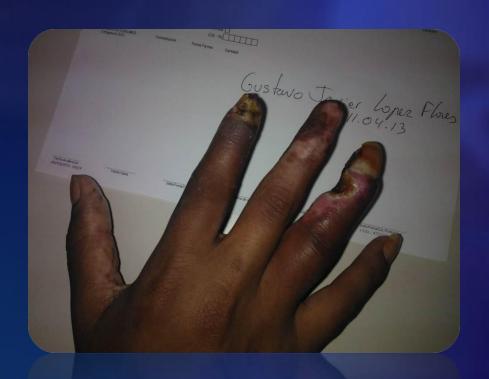
Dosis debida al HAZ TRNASMITIDO + HAZ DIRECTO (Gy):		
Zona o parte del cuerpo	D (Gy)	
A cuerpo tota l del operador	1.7	
En el dedo índice de la mano izquierda	50.0	
en las gónadas:	1.3	
En el tiroides:	1.3	
En cristalino	1.1	
En la mano izquierda	14.7	

DOSIMETRIA BIOLOGICA


Names	Whole body dose [Gy]	[Confidence Interval]	Partial body irradiation
Worker 1	1.86	[1.56 - 2.20]	Yes
Co-worker 2	0.75	[0.50 - 1.06]	No
Co-worker 1	0.45	[0.23 - 0.75]	No
RPO (VPI)	Not in Scale		No
Worker 2 (RBC)	Not in Scale		No


Dose reconstruction based biological dosimetry tests

DOSIMETRIA BIOLOGICA



El 5 de febrero 2012 es trasladado a Francia

control abril 2013

RMN no se observa osteonecrosis

Espermatograma del 31.01.13.- oligozoospermia

AMPUTACION DE FALANGES Y TRANSPLANTE DE CELULAS MESENQUIMALES. CHILE

teléfonos: 998-845631 / 993-576486 alachosd@yahoo.com alachosd1271@yahoo.com